Tennessee Math Standards

Introduction

The Process

The Tennessee State Math Standards were reviewed and developed by Tennessee teachers for Tennessee schools. The rigorous process used to arrive at the standards in this document began with a public review of the then-current standards. After receiving 130,000+ reviews and 20,000+ comments, a committee composed of Tennessee educators spanning elementary through higher education reviewed each standard. The committee scrutinized and debated each standard using public feedback and the collective expertise of the group. The committee kept some standards as written, changed or added imbedded examples, clarified the wording of some standards, moved some standards to different grades, and wrote new standards that needed to be included for coherence and rigor. From here the standards went before the appointed Standards Review Committee to make further recommendations before being presented to the Tennessee Board of Education for final adoption.

The result is Tennessee Math Standards for Tennessee Students by Tennesseans.

Mathematically Prepared

Tennessee students have various mathematical needs that their K-12 education should address.
All students should be able to recall and use their math education when the need arises. That is, a student should know certain math facts and concepts such as the multiplication table, how to add, subtract, multiply, and divide basic numbers, how to work with simple fractions and percentages, etc. There is a level of procedural fluency that a student's K-12 math education should provide him or her along with conceptual understanding so that this can be recalled and used throughout his or her life. Students also need to be able to reason mathematically. This includes problem solving skills in work and non-work related settings and the ability to critically evaluate the reasoning of others.

A student's K-12 math education should also prepare him or her to be free to pursue post-secondary education opportunities. Students should be able to pursue whatever career choice, and its post-secondary education requirements, that they desire. To this end, the K-12 math standards lay the foundation that allows any student to continue further in college, technical school, or with any other post-secondary educational needs.

A college and career ready math class is one that addresses all of the needs listed above. The standards' role is to define what our students should know, understand, and be able to do mathematically so as to fulfill these needs. To that end, the standards address conceptual understanding, procedural fluency, and application.

Conceptual Understanding, Procedural Fluency, and Application

In order for our students to be mathematically proficient, the standards focus on a balanced development of conceptual understanding, procedural fluency, and application. Through this balance, students gain understanding and critical thinking skills that are necessary to be truly college and career ready.

Conceptual understanding refers to understanding mathematical concepts, operations, and relations. It is more than knowing isolated facts and methods. Students should be able to make sense of why a mathematical idea is important and the kinds of contexts in which it is useful. It also allows students to connect prior knowledge to new ideas and concepts.

Procedural fluency is the ability to apply procedures accurately, efficiently, and flexibly. One cannot stop with memorization of facts and procedures alone. It is about recognizing when one strategy or procedure is more appropriate to apply than another. Students need opportunities to justify both informal strategies and commonly used procedures through distributed practice. Procedural fluency includes computational fluency with the four arithmetic operations. In the early grades, students are expected to develop fluency with whole numbers in addition, subtraction, multiplication, and division. Therefore, computational fluency expectations are addressed throughout the standards. Procedural fluency extends students' computational fluency and applies in all strands of mathematics. It builds from initial exploration and discussion of number concepts to using informal strategies and the properties of operations to develop general methods for solving problems (NCTM, 2014).

Application provides a valuable context for learning and the opportunity to practice skills in a relevant and a meaningful way. As early as Kindergarten, students are solving simple "word problems" with meaningful contexts. In fact, it is in solving word problems that students are building a repertoire of procedures for computation. They learn to select an efficient strategy and determine whether the solution(s) makes sense. Problem solving provides an important context in which students learn about numbers and other mathematical topics by reasoning and developing critical thinking skills (Adding It Up, 2001).

Progressions

The standards for each grade are not written to be nor are they to be considered as an island in and of themselves. There is a flow, or progression, from one grade to the next, all the way through to the high school standards. There are four main progressions that are composed of mathematical domains/conceptual categories (see the Structure section below and color chart on the following page).

The progressions are grouped as follows:

Grade	Domain/Conceptual Category
K K-5	Counting and Cardinality
$3-5$	Number and Operations in Base Ten
$6-7$	Number and Operations - Fractions
$6-8$	Ratios and Proportional Relationships
$9-12$	The Number System
Number and Quantity	
K-5	6-8 Operations and Algebraic Thinking 8 Functions $9-12$ Algebra and Functions K-12 Geometry K-5 Statistics and Probability $6-12$

State Standards - Mathematics
Learning Progressions

Kindergarten	1	2	3	4	5	6	7	8	HS
Counting and Cardinality									
Number and Operations in Base Ten						Ratio			Number and Quantity
			Number and Operations. Fractions			The Number System			
Operations and Algebraic Thinking						Expressions and Equations			Algebra
								Functions	Functions
Geometry						Geometry			Geometry
Measurement and Data						Statistics and Probability			Statistics and Probability

Each of the progressions begins in Kindergarten, with a constant movement toward the high school standards as a student advances through the grades. This is very important to guarantee a steady, age appropriate progression which allows the student and teacher alike to see the overall coherence of and connections among the mathematical topics. It also ensures that gaps are not created in the mathematical education of our students.

Structure of the Standards

Most of the structure of the previous state standards has been maintained. This structure is logical and informative as well as easy to follow. An added benefit is that most Tennessee teachers are already familiar with it.

The structure includes:

- Content Standards - Statements of what a student should know, understand, and be able to do.
- Clusters - Groups of related standards. Cluster headings may be considered as the big idea(s) that the group of standards they represent are addressing. They are therefore useful as a quick summary of the progression of ideas that the standards in a domain are covering and can help teachers to determine the focus of the standards they are teaching.
- Domains - A large category of mathematics that the clusters and their respective content standards delineate and address. For example, Number and Operations - Fractions is a domain under which there are a number of clusters (the big ideas that will be addressed) along with their respective content standards, which give the specifics of what the student should know, understand, and be able to do when working with fractions.
- Conceptual Categories - The content standards, clusters, and domains in the $9^{\text {th }}-12^{\text {th }}$ grades are further organized under conceptual categories. These are very broad categories of mathematical thought and lend themselves to the organization of high school course work. For example, Algebra is a conceptual category in the high school standards under which are domains such as Seeing Structure in Expressions, Creating Equations, Arithmetic with Polynomials and Rational Expressions, etc.

Standards and Curriculum

It should be noted that the standards are what students should know, understand, and be able to do; but, they do not dictate how a teacher is to teach them. In other words, the standards do not dictate curriculum. For example, students are to understand and be able to add, subtract, multiply, and divide fractions according to the standards. Although within the standards algorithms are mentioned and examples are given for clarification, how to approach these concepts and the order in which the standards are taught within a grade or course are all decisions determined by the local district, school, andteachers.

Example from the Standards' Document for K - 8

Taken from $3^{\text {rd }}$ Grade Standards:

Measurement and Data (MD)

Cluster Headings

	3.MD.A.1 Tell and write time to the nearest minute and measure time intervals in minutes. Solve contextual problems involving addition and subtraction of time intervals in minutes. For example, students may use a number line to determine the difference between the start time and the end time of lunch.
A. Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects.	3.MD.A. 2 Measure the mass of objects and liquid volume using standard units of grams (g), kilograms (kg), milliliters (ml), and liters (I . Estimate the mass of objects and liquid volume using benchmarks. For example, a large paper clip is about one gram, so a box of about 100 large clips is about 100 grams. Therefore, ten boxes would be about 1 kilogram.

The domain is indicated at the top of the table of standards. The left column of the table contains the cluster headings. A light green coloring of the cluster heading (and codes of each of the standards within that cluster) indicates the major work of the grade. Supporting standards have no coloring. In this way, printing on a non-color printer, the standards belonging to the major work of the grade will be lightly shaded and stand distinct from the supporting standards. This color coding scheme will be followed throughout all standards $\mathrm{K}-$ 12. Next to the clusters are the content standards that indicate specifically what a student is to know, understand, and do with respect to that cluster. The numbering scheme for K-8 is intuitive and consistent throughout the grades. The numbering scheme for the high school standards will be somewhat different.

Example coding for grades K-8 standards:

3.MD.A. 1

3 is the grade level.
Measurement and Data (MD) is the domain.
A is the cluster (ordered by A, B, C, etc. for first cluster, second cluster, etc.).
1 is the standard number (the standards are numbered consecutively throughout each domain regardless of cluster).

Example from the Standards' Document for 9 - 12

Taken from Integrated Math 1 Standards:

Algebra

Seeing Structure in Expressions (A.SSE)

Cluster Headings Content Standards \quad Scope \& Clarifications

	M1.A.SSE.A. 1 Interpret expressions that represent a quantity in terms of its context.	For example, interpret $P(1+r)^{n}$ as the product of P and a factor not depending on P.		
A. Interpret the structure of expressions.	a. Interpret parts of an expression, such as terms, factors, and coefficients.	b. Interpret complicated expressions by viewing one or more of their parts as a single entity.		Tasks are limited to linear and
:---				
exponential expressions, including				
related numerical expressions.				

The high school standards follow a slightly different coding structure. They start with the course indicator (M1 - Integrated Math 1, A1 - Algebra 1, G-Geometry, etc.), then the conceptual category (in the example below - Algebra) and then the domain (just above the table of standards it represents - Seeing Structure in Expressions). There are various domains under each conceptual category. The table of standards contains the cluster headings (see explanation above), content standards, and the scope and clarifications column, which gives further clarification of the standard and the extent of its coverage in the course. A * with a standard indicates a modeling standard (see MP4 on p.11). The color coding is light green for the major work of the grade and no color for the supporting standards.

Example coding for grades 9-12 standards:

M1.A.SSE.A. 1

Integrated Math 1 (M1) is the course.
Algebra (A) is the conceptual category.
Seeing Structure in Expressions (SSE) is the domain.
A is the cluster (ordered by A, B, C, etc. for first cluster, second cluster, etc.).
1 is the standard number (the standards are numbered consecutively throughout each domain regardless of cluster).

Tennessee State Math Standards

The Standards for Mathematical Practice

Being successful in mathematics requires that development of approaches, practices, and habits of mind be in place as one strives to develop mathematical fluency, procedural skills, and conceptual understanding. The Standards for Mathematical Practice are meant to address these areas of expertise that teachers should seek to develop within their students. These approaches, practices, and habits of mind can be summarized as "processes and proficiencies" that successful mathematicians have as a part of their work in mathematics.

Processes and proficiencies are two words that address the purpose and intent of the practice standards. Process is used to indicate a particular course of action intended to achieve a result, and this ties to the process standards from NCTM that pertain to problem solving, reasoning and proof, communication, representation, and connections. Proficiencies pertain to being skilled in the command of fundamentals derived from practice and familiarity. Mathematically, this addresses concepts such as adaptive reasoning, strategic competence, conceptual understanding, procedural fluency, and productive dispositions toward the work at hand. The practice standards are written to address the needs of the student with respect to being successful in mathematics.

These standards are most readily developed in the solving of high-level mathematical tasks. High-level tasks demand a greater level of cognitive effort to solve than routine practice problems do. Such tasks require one to make sense of the problem and work at solving it. Often a student must reason abstractly and quantitatively as he or she constructs an approach. The student must be able to argue his or her point as well as critique the reasoning of others with respect to the task. These tasks are rich enough to support various entry points for finding solutions. To develop the processes and proficiencies addressed in the practice standards, students must be engaged in rich, high-level mathematical tasks that support the approaches, practices, and habits of mind which are called for within these standards.

The following are the eight standards for mathematical practice:

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

A full description of each of these standards follows.

MP1: Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficientstudents check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

MP2: Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand, considering the units involved, attending to the meaning of quantities, not just how to compute them, and knowing and flexibly using different properties of operations and objects.

MP3: Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and, if there is a flaw in an argument, explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

MP4: Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts, and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

MP5: Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a compass, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

MP6: Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, expressing numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school, they have learned to examine claims and make explicit use of definitions.

MP7: Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students see 7 $\times 8$ equals the well-remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

MP8: Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}\right.$ $+x+1$) might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

Literacy Skills for Mathematical Proficiency

Communication in mathematics employs literacy skills in reading, vocabulary, speaking and listening, and writing. Mathematically proficient students communicate using precise terminology and multiple representations including graphs, tables, charts, and diagrams. By describing and contextualizing mathematics, students create arguments and support conclusions. They evaluate and critique the reasoning of others and analyze and reflect on their own thought processes. Mathematically proficient students have the capacity to engage fully with mathematics in context by posing questions, choosing appropriate problem-solving approaches, and justifying solutions.

Literacy Skills for Mathematical Proficiency

1. Use multiple reading strategies.
2. Understand and use correct mathematical vocabulary.
3. Discuss and articulate mathematical ideas.
4. Write mathematical arguments.

Reading

Reading in mathematics is different from reading literature. Mathematics contains expository text along with precise definitions, theorems, examples, graphs, tables, charts, diagrams, and exercises. Students are expected to recognize multiple representations of information, use mathematics in context, and draw conclusions from the information presented. In the early grades, non-readers and struggling readers benefit from the use of multiple representations and contexts to develop mathematical connections, processes, and procedures. As students' literacy skills progress, their skills in mathematics develop so that by high school, students are using multiple reading strategies, analyzing context-based problems to develop understanding and comprehension, interpreting and using multiple representations, and fully engaging with mathematics textbooks and other mathematics-based materials. These skills support Mathematical Practices 1 and 2.

Vocabulary

Understanding and using mathematical vocabulary correctly is essential to mathematical proficiency. Mathematically proficient students use precise mathematical vocabulary to express ideas. In all grades, separating mathematical vocabulary from everyday use of words is important for developing an understanding of mathematical concepts. For example, a "table" in everyday use means a piece of furniture, while in mathematics, a "table" is a way of organizing and presenting information. Mathematically proficient students are able to parse a mathematical term, definition, or theorem, provide examples and counterexamples, and use precise mathematical vocabulary in reading, speaking, and writing arguments and explanations. These skills support Mathematical Practice 6.

Speaking and Listening

Mathematically proficient students can listen critically, discuss, and articulate their mathematical ideas clearly to others. As students' mathematical abilities mature, they move from communicating through reiterating others' ideas to paraphrasing, summarizing, and drawing their own conclusions. A
mathematically proficient student uses appropriate mathematics vocabulary in verbal discussions, listens to mathematical arguments, and dissects an argument to recognize flaws or determine validity. These skills support Mathematical Practice 3.

Writing

Mathematically proficient students write mathematical arguments to support and refute conclusions and cite evidence for these conclusions. Throughout all grades, students write reflectively to compare and contrast problem-solving approaches, evaluate mathematical processes, and analyze their thinking and decision-making processes to improve their mathematical strategies. These skills support Mathematical Practices 2, 3, and 4.

Algebra I |A1

Algebra I emphasizes linear and quadratic expressions, equations, and functions. This course also introduces students to polynomial, rational and exponential functions with domains in the integers. Students explore the structures of and interpret functions and other mathematical models. Students build upon previous knowledge of equations and inequalities to reason, solve, and represent equations and inequalities numerically and graphically.

The major work of Algebra I is from the following domains and clusters:

- Seeing Structure in Expressions
o Interpret the structure of expressions.
o Write expressions in equivalent forms to solve problems.
- Arithmetic with Polynomials and Rational Expressions
o Perform arithmetic operations on polynomials.
- Creating Equations
o Create equations that describe numbers or relationships.
- Reasoning with Equations and Inequalities
o Understand solving equations as a process of reasoning and explain the reasoning.
o Solve equations and inequalities in one variable.
o Represent and solve equations and inequalities graphically.
- Interpreting Functions
o Understand the concept of a function and use functionnotation.
o Interpret functions that arise in applications in terms of the context.
- Interpreting Categorical and Quantitative Data
o Interpret linear models.
Supporting work is from the following domains and clusters:
- Quantities
o Reason quantitatively and use units to solve problems.
- Arithmetic with Polynomials and Rational Expressions
o Understand the relationship between zeros and factors of polynomials.
- Reasoning with Equations and Inequalities
o Solve systems of equations.
- Interpreting Functions
o Analyze functions using different representations.
- Building Functions
o Build a function that models a relationship between two quantities.
o Build new functions from existing functions.
- Linear, Quadratic, and Exponential Models
o Construct and compare linear, quadratic, and exponential models and solve problems.
o Interpret expressions for functions in terms of the situation theymodel.
- Interpreting Categorical and Quantitative Data
o Summarize, represent, and interpret data on a single count or measurement variable.
o Summarize, represent, and interpret data on two categorical and quantitative variables.

Mathematical Modeling

Mathematical Modeling is a Standard for Mathematical Practice (MP4) and a Conceptual Category. Specific modeling standards appear throughout the high school standards indicated with a $\operatorname{star}(\star)$. Where an entire domain is marked with a star, each standard in that domain is a modeling standard.

Standards for Mathematical Practice

Being successful in mathematics requires the development of approaches, practices, and habits of mind that need to be in place as one strives to develop mathematical fluency, procedural skills, and conceptual understanding. The Standards for Mathematical Practice are meant to address these areas of expertise that teachers should seek to develop in their students. These approaches, practices, and habits of mind can be summarized as "processes and proficiencies" that successful mathematicians have as a part of their work in mathematics. Additional explanations are included in the main introduction of these standards.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Literacy Standards for Mathematics

Communication in mathematics employs literacy skills in reading, vocabulary, speaking and listening, and writing. Mathematically proficient students communicate using precise terminology and multiple representations including graphs, tables, charts, and diagrams. By describing and contextualizing mathematics, students create arguments and support conclusions. They evaluate and critique the reasoning of others, analyze, and reflect on their own thought processes. Mathematically proficient students have the capacity to engage fully with mathematics in context by posing questions, choosing appropriate problem-solving approaches, and justifying solutions. Further explanations are included in the main introduction.

Literacy Skills for Mathematical Proficiency

1. Use multiple reading strategies.
2. Understand and use correct mathematical vocabulary.
3. Discuss and articulate mathematical ideas.
4. Write mathematical arguments.

Number and Quantity

Quantities* (N.Q)

Cluster Headings

Content Standards

Scope \& Clarifications

A. Reason quantitatively and use units to solve problems.	A1.N.Q.A. 1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	There are no assessment limits for this standard. The entire standard is assessed in this course.
	A1.N.Q.A. 2 Identify, interpret, and justify appropriate quantities for the purpose of descriptive modeling.	Descriptive modeling refers to understanding and interpreting graphs; identifying extraneous information; choosing appropriate units; etc. There are no assessment limits for this standard. The entire standard is assessed in this course.
	A1.N.Q.A. 3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	There are no assessment limits for this standard. The entire standard is assessed in this course.

Algebra

Seeing Structure in Expressions (A.SSE)

Cluster Headings

A. Interpret the
structure of
expressions.

Content Standards

Scope \& Clarifications

A1.A.SSE.A. 1 Interpret expressions that represent a quantity in terms of its context. ${ }^{\star}$
a. Interpret parts of an expression, such as terms, factors, and coefficients.
b. Interpret complicated expressions by viewing one or more of their parts as a single entity.

For example, interpret $P(1+r)^{n}$ as the product of P and a factor not depending on P.

There are no assessment limits for this standard. The entire standard is assessed in this course.

A. Interpret the structure of expressions.	A1.A.SSE.A. 2 Use the structure of an expression to identify ways to rewrite it.	For example, recognize $53^{2}-47^{2}$ as a difference of squares and see an opportunity to rewrite it in the easier-to-evaluate form $(53+47)(53-47)$. See an opportunity to rewrite $a^{2}+9 a+14 a s(a+7)(a+2)$ Tasks are limited to numerical expressions and polynomial expressions in one variable.
	A1.A.SSE.B. 3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. ${ }^{\star}$	For A1.A.SSE.B.3c: For example, the growth of bacteria can be modeled by either $f(t)=3^{(t+2)}$ or $g(t)=9\left(3^{t}\right)$ because the expression $3^{(t+2)}$ can be rewritten as $\left(3^{t}\right)\left(3^{2}\right)=$ 9(3).
B. Write expressions in equivalent forms to solve problems.	a. Factor a quadratic expression to reveal the zeros of the function it defines. b. Complete the square in a quadratic expression in the form $A x^{2}+B x+C$ where $A=1$ to reveal the maximum or minimum value of the function it defines. c. Use the properties of exponents to rewrite exponential expressions.	i) Tasks have a real-world context. As described in the standard, there is an interplay between the mathematical structure of the expression and the structure of the situation such that choosing and producing an equivalent form of the expression reveals something about the situation. ii) Tasks are limited to exponential expressions with integer exponents.

Arithmetic with Polynomials and Rational Expressions (A.APR)

Cluster Headings
Content Standards
Scope \& Clarifications

A. Perform arithmetic operations on polynomials.	A1.A.APR.A.1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	There are no assessment limits for this standard. The entire standard is assessed in this course.
B. Understand the relationship between zeros and factors of polynomials.	A1.A.APR.B.2 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.	Graphing is limited to linear and quadratic polynomials.

Creating Equations* (A.CED)

Cluster Headings

Content Standards
Scope \& Clarifications

A. Create equations that describe numbers or relationships.	A1.A.CED.A. 1 Create equations and inequalities in one variable and use them to solve problems.	Tasks are limited to linear, quadratic, or exponential equations with integer exponents.
	A1.A.CED.A. 2 Create equations in two or more variables to represent relationships between quantities; graph equations with two variables on coordinate axes with labels and scales.	There are no assessment limits for this standard. The entire standard is assessed in this course.
	A1.A.CED.A. 3 Represent constraints by equations or inequalities and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.	For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. There are no assessment limits for this standard. The entire standard is assessed in this course.
	A1.A.CED.A. 4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	i) Tasks are limited to linear, quadratic, piecewise, absolute value, and exponential equations with integer exponents. ii) Tasks have a real-world context.

Reasoning with Equations and Inequalities (A.REI)

Cluster Headings

Content Standards

Scope \& Clarifications

A. Understand
solving
equations as a process of reasoning and explain the reasoning.
B. Solve equations and inequalities in one variable.

A1.A.REI.A. 1 Explain each step in solving an equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

A1.A.REI.B. 2 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Tasks are limited to linear, quadratic, piecewise, absolute value, and exponential equations with integer exponents.

There are no assessment limits for this standard. The entire standard is assessed in this course.

B. Solve equations and inequalities in one variable.	A1.A.REI.B. 3 Solve quadratic equations and inequalities in one variable. a. Use the method of completing the square to rewrite any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form. b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, knowing and applying the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions.	For A1.A.REI.B.3b: Tasks do not require students to write solutions for quadratic equations that have roots with nonzero imaginary parts. However, tasks can require the student to recognize cases in which a quadratic equation has no real solutions. Note: solving a quadratic equation by factoring relies on the connection between zeros and factors of polynomials. This is formally assessed in Algebra II.
C. Solve systems of equations.	A1.A.REI.C. 4 Write and solve a system of linear equations in context.	Solve systems both algebraically and graphically. Systems are limited to at most two equations in two variables.
D. Represent and solve equations and inequalities graphically.	A1.A.REI.D. 5 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	There are no assessment limits for this standard. The entire standard is assessed in this course.
	A1.A.REI.D. 6 Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the approximate solutions using technology. *	Include cases where $f(x)$ and/or $g(x)$ are linear, quadratic, absolute value, and exponential functions. For example, $f(x)=3 x+5$ and $g(x)=x^{2}+1$. Exponential functions are limited to domains in the integers.
	A1.A.REI.D. 7 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	There are no assessment limits for this standard. The entire standard is assessed in this course.

Functions

Interpreting Functions (F.IF)

Cluster Headings

Content Standards

Scope \& Clarifications

A. Understand the concept of function and use function notation.	A1.F.IF.A. 1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.	There are no assessment limits for this standard. The entire standard is assessed in this course.
	A1.F.IF.A. 2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	There are no assessment limits for this standard. The entire standard is assessed in this course.
B. Interpret functions that arise in applications in terms of the context.	A1.F.IF.B. 3 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *	Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; and end behavior. i) Tasks have a real-world context. ii) Tasks are limited to linear functions, quadratic functions, absolute value functions, and exponential functions with domains in the integers.
	A1.F.IF.B. 4 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *	For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. There are no assessment limits for this standard. The entire standard is assessed in this course.

B. Interpret functions that arise in applications in terms of the context.	A1.F.IF.B. 5 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. ${ }^{\star}$	i) Tasks have a real-world context. ii) Tasks are limited to linear functions, quadratic functions, piecewise-defined functions (including step functions and absolute value functions), and exponential functions with domains in the integers.
C. Analyze functions using different representations.	A1.F.IF.C. 6 Graph functions expressed symbolically and show key features of the graph, by hand and using technology. a. Graph linear and quadratic functions and show intercepts, maxima, and minima. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.	Tasks in A1.F.IF.C. $6 b$ are limited to piecewise, step and absolute value functions.
	A1.F.IF.C. 7 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.	There are no assessment limits for this standard. The entire standard is assessed in this course.
	A1.F.IF.C. 8 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	i) Tasks have a real-world context. ii) Tasks are limited to linear functions, quadratic functions, piecewise-defined functions (including step functions and absolute value functions), and exponential functions with domains in the integers.

Building Functions (F.BF)

Cluster Headings	Content Standards	Scope \& Clarifications
A. Build a function that models a relationship between two quantities.	A1.F.BF.A. 1 Write a function that describes a relationship between two quantities. ${ }^{\star}$ a. Determine an explicit expression, a recursive process, or steps for calculation from a context.	i) Tasks have a real-world context. ii) Tasks are limited to linear functions, quadratic functions, and exponential functions with domains in the integers.
B. Build new functions from existing functions.	A1.F.BF.B. 2 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.	i) Identifying the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x)$, and $f(x+k)$ for specific values of k (both positive and negative) is limited to linear, quadratic, and absolute value functions. ii) $f(k x)$ will not be included in Algebra 1. It is addressed in Algebra 2. iii) Experimenting with cases and illustrating an explanation of the effects on the graph using technology is limited to linear functions, quadratic functions, absolute value, and exponential functions with domains in the integers. iv) Tasks do not involve recognizing even and odd functions.

Linear, Quadratic, and Exponential Models ${ }^{\star}$ (F.LE)

Cluster Headings

A. Construct and compare linear, quadratic, and exponential models and solve problems.	A1.F.LE.A. 1 Distinguish between situations that can be modeled with linear functions and with exponential functions. a. Recognize that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals. b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. c. Recognize situations in which a quantity grows or decays by a constant factor per unit interval relative to another.	There are no assessment limits for this standard. The entire standard is assessed in this course.
	A1.F.LE.A. 2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a table, a description of a relationship, or input-output pairs.	Tasks are limited to constructing linear and exponential functions in simple context (not multi-step).
	A1.F.LE.A. 3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	There are no assessment limits for this standard. The entire standard is assessed in this course.
B. Interpret expressions for functions in terms of the situation they model.	F.LE.B. 4 Interpret the parameters in a linear or exponential function in terms of a context.	For example, the total cost of an electrician who charges 35 dollars for a house call and 50 dollars per hour would be expressed as the function $y=50 x+35$. If the rate were raised to 65 dollars per hour, describe how the function would change. i) Tasks have a real-world context. ii) Exponential functions are limited to those with domains in the integers.

Statistics and Probability

Interpreting Categorical and Quantitative Data (S.ID)

Major content of the course is indicated by the light green shading of the cluster heading and standard's coding.

	Major Content	Supporting Content

